
Computer Physics Communications 179 (2008) 245–249

www.elsevier.com/locate/cpc

A parallel implementation of an MHD code for the simulation of
mechanically driven, turbulent dynamos in spherical geometry

K. Reuter a,∗, F. Jenko a, C.B. Forest b, R.A. Bayliss b

a Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85748 Garching, Germany
b Department of Physics, University of Wisconsin–Madison, 1150 University Ave., Madison, WI 53706, USA

Received 24 July 2007; accepted 20 February 2008

Available online 26 February 2008

Abstract

A parallel implementation of a nonlinear pseudo-spectral MHD code for the simulation of turbulent dynamos in spherical geometry is reported.
It employs a dual domain decomposition technique in both real and spectral space. It is shown that this method shows nearly ideal scaling going up
to 128 CPUs on Beowulf-type clusters with fast interconnect. Furthermore, the potential of exploiting single precision arithmetic on standard x86
processors is examined. It is pointed out that the MHD code thereby achieves a maximum speedup of 1.7, whereas the validity of the computations
is still granted. The combination of both measures will allow for the direct numerical simulation of highly turbulent cases (1500 < Re < 5000),
which have been previously impractical, given today’s computational speed.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

One fundamental issue in geophysics and astrophysics is the
question how the kinetic energy in a flow of an electrically
conducting fluid or plasma is converted to magnetic energy.
This mechanism is usually referred to as the self-excited dy-
namo process or magnetohydrodynamic (MHD) dynamo, and
it is accepted to be the cause of the magnetic fields of the
Earth and of many astrophysical objects [1]. In these systems,
rotational, thermal, and (gravitational) potential energy serve
as sources for the generation of large scale magnetic fields.
Briefly described, the process by which these fields are gener-
ated is as follows. When an electrically conducting fluid flows
through a region interspersed with a magnetic field, an elec-
tromotive force (EMF) is induced. This EMF causes currents in
the medium which in turn generate a magnetic field. If the latter
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is oriented in a way that it reinforces the initial (seed) field, and
if the amplification is sufficiently strong to overcome Ohmic
losses, then the magnetic field will grow in time.

To study self-excitation, several experiments have been car-
ried out using liquid metal, at first prescribing laminar flows by
pipes [2,3]. With the advent of modern computing resources,
three-dimensional direct numerical simulations of geo-, astro-
physical and laboratory dynamos also became possible, tar-
geted at the investigation of the dynamo effect in more realistic,
bounded geometries [4–7]. At the same time, theoretical under-
standing of MHD turbulence has been advanced by simulations
in periodic box geometry [8,9]. Turbulence plays an important
role in the onset and saturation of the dynamo process. Re-
cent investigations focus on the role of turbulent fluctuations
in magnetic field generation. Experimentalists turned towards
less restricted flows in simply connected geometries [10–14],
whereas theorists examined the effects of different scales of
fluctuations on the dynamo onset [15].

In the case of an electrically conducting, incompressible
fluid, magnetic (B) and velocity (v) fields are governed by the
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following MHD equations

(1)
∂B
∂t

= ∇ × v × B + 1

μ0σ
∇2B,

(2)ρ
∂v
∂t

+ ρ(v · ∇)v = j × B + ρν∇2v − ∇p + F,

(3)∇ · B = ∇ · v = 0,

where σ is the conductivity, ρ is the mass density, ν is the
viscosity, p is the pressure, j = μ−1

0 ∇ × B is the current den-
sity, and F is a driving term. Eqs. (1)–(3) constitute a non-
linear system of partial differential equations which can only
be tackled numerically. Fluid turbulence is governed by the
Reynolds number Re = LV/ν, while magnetic self-excitation
is in addition governed by the magnetic Reynolds number
Rm = μ0σLV , where L (V ) is a characteristic length (veloc-
ity) of the system. Magnetic field generation can occur if the
condition Rm > Rmcrit is satisfied, where Rmcrit is a threshold
which depends on the flow geometry as well as on the level of
turbulent fluctuations expressed by Re. To find and explain the
shape of the curve Rmcrit(Re) is an active field of research in
theory and of practical relevance for magnetic field generation
in laboratory experiments [16].

A pseudo-spectral code which solves the MHD equa-
tions in the spherical geometry of an impeller-driven liquid
metal dynamo experiment was developed at the University of
Wisconsin–Madison [16]. Using the MHD code, a parameter
scan in Re–Rm space is currently performed to shed light on
the dynamo threshold. The program was initially designed to
run on a single processor which limited turbulent simulations
to Re < 1500, given today’s computational speed. In the exper-
iment using liquid sodium, the magnetic Reynolds number is of
the order ∼102, whereas the Reynolds number is of the order
∼107 [11]. While the magnetic field can be resolved well, fluid
turbulence at such high Re is far beyond the scope of direct
numerical simulations. Considering Kolmogorov’s theory of
turbulence, it can be estimated that the required number of grid
points scales like Re9/4 [17]. However, by choosing Re � Rm
in the simulations it is possible to asymptotically capture the
dominant effects the turbulence has on the magnetic field, giv-
ing a unique opportunity to compare MHD simulations with
experiments.

In this paper, we report the parallelization of the code using
a domain decomposition technique in real and spectral space.
Furthermore, we show that a significant speedup is gained by
using IEEE single precision arithmetic, without affecting the
validity of the computations. The combination of both measures
permits the numerical exploration of the regime 1500 < Re <

5000. The method presented here is of potential use to speed up
similar pseudo-spectral codes.

This paper is organized as follows. In Section 2, a brief
review of the mathematical/physical model is given, as it is im-
plemented in the code. In Section 3, the parallelization strategy
is discussed. The potential gain of using single precision arith-
metic in the code is discussed in Section 4. The benefit of both
measures is quantified in terms of scaling tests in Section 5. Fi-
nally, Section 6 closes with a summary.
2. Mathematical/physical model

In order to substantiate the parallelization strategy presented
in the next section, we give an abridgment of the physical model
and the numerical method. In a spherical geometry, it is fa-
vorable to split magnetic and velocity fields into poloidal and
toroidal components of the form

(4)v = ∇ × ∇ × sr + ∇ × tr,

(5)B = ∇ × ∇ × Sr + ∇ × T r,

where s, t and S, T are complex scalar functions of the coor-
dinates r , θ and φ [18]. One advantage of this representation is
that the curl of a vector field effectively reduces to a Laplacian
applied to its poloidal scalar function. One easily derives from
Eq. (4) that the vorticity reads

(6)ω = ∇ × ∇ × tr + ∇ × (−∇2s)r.

The scalar functions are expanded in normalized spherical har-
monics Yl,m(θ,φ), the analogue of a Fourier decomposition on
the surface of a sphere. Taking the curl of Eq. (2) and substi-
tuting Eq. (4) gives two equations which govern the temporal
evolution of the radial parts sl,m(r, t) and tl,m(r, t) for each
mode l,m. In a dimensionless form, they read

(7)

(
∂

∂τ
+ Rm0

Re0
∇2

)
∇2s = Rm0[G]T + [∇ × F]T ,

(8)

(
∂

∂τ
− Rm0

Re0
∇2

)
t = Rm0[G]S + [∇ × F]S,

where τ is the time variable, G is the sum of the nonlinear ad-
vection term and the Lorentz force, and the subscripts “S” and
“T ” signify the corresponding poloidal and toroidal scalar func-
tions. The driving term F models the counter-rotating impellers
as they are used in the Madison Dynamo Experiment. Applying
the same method on Eq. (1), evolution equations for the mag-
netic scalars S and T are obtained. For further details, as well
as for a discussion of boundary conditions the reader is referred
to [16].

Radial derivatives of fourth-order accuracy are computed in
terms of finite differences on a non-uniform radial grid, which
allows mesh packing near the outer boundary. The nonlinear
terms G are evaluated using a pseudo-spectral method. This
approach requires efficient routines which convert vector fields
from real space to spectral space, and vice versa. Aliasing er-
ror is avoided in a standard way by truncating the upper third
of the spectrum. The number of spectral modes is given by the
equation n = (l + 1)(l + 2)/2, where l is chosen as 2/3 of the
number of points in poloidal direction for dealisaing reasons.
Despite the fact that more than 75% of the computational time
is used for these spectral transforms, the pseudospectral method
pays off in terms of simplicity. Explicit second-order Adams–
Bashforth predictor–corrector steps are used to advance the
nonlinear terms, whereas the implicit Crank–Nicolson method
is used to compute the temporal evolution of the linear terms.
The latter requires the solution of linear band-diagonal systems
of equations, the corresponding coefficient matrices are con-
structed from the discretized form of the differential operators
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on the left-hand side of Eqs. (7) and (8), analogously for the
equations which govern the magnetic field in terms of S and T .
Since these matrices only change during runtime when the time
step has to be reduced, they are precomputed and stored. To
check the validity of the simulation, the balance of power is
computed, which monitors the energy flow between the veloc-
ity field and the magnetic field.

3. Parallelization strategy

The geometry of the problem suggests a radial domain de-
composition into spherical shells which are distributed across
nodes. Computations are performed at the discrete radii in par-
allel, either in real space for all discrete angles θ and φ, or in
spectral space for all modes l,m. The spectral transforms oper-
ate independently in radial direction, and thus are parallelized
easily. To satisfy the requirements of the fourth-order radial
derivatives, ghost cells with a width of 2 points have to be kept
up to date at the domain boundaries. Thus, the right-hand side
of the discretized form of Eqs. (7) and (8) can be computed us-
ing the radial decomposition.

However, the implicit Crank–Nicolson method demands a
full radial range of points for each spectral mode. This require-
ment is contrary to the domain decomposition in real space, but
at the same time particularly suitable for a second decomposi-
tion in spectral space. To connect both decompositions, global
transposes of arrays which contain the right-hand side of the
discretized form of Eqs. (7) and (8) are needed. The approach
was implemented using the Message Passing Interface (MPI).
Despite the fact that the global matrix transposes require ex-
pensive all-to-all communication, this method proves proper
scaling on Beowulf-type clusters with fast interconnect, as it
is shown in Section 5.

4. Exploiting single precision arithmetic

Some of the recent microprocessors perform significantly
better in IEEE single precision arithmetic than they do in dou-
ble precision. Examples include Intel’s Pentium IV and AMD’s
Opteron processors which achieve twice the theoretical peak
performance in single precision compared to double precision,
provided that Streaming SIMD Extensions (SSE2) are used
[19]. These CPUs are widely found in Beowulf-type clusters,
which makes it an interesting feature to exploit. IBM’s Cell ar-
chitecture is even 10 times faster in single precision, whereas
certain 64-bit microprocessors like the IBM POWER series or
Intel’s Itanium 2 do not profit from single precision arithmetic
[20]. Apart from architecture-specific aspects, single precision
arithmetic halves memory consumption compared to double
precision, thus improves caching and effectively doubles band-
width associated with I/O and inter-process communication in
parallel computing.

However, only certain classes of scientific codes are suit-
able for operation in reduced precision. The present MHD code
falls into that category. The dynamics of nonlinear systems, like
the MHD dynamo, are sensitive to initial conditions, a property
which is usually referred to as deterministic chaos. A numer-
ical simulation intrinsically works with a limited number of
decimal places, thus permanently introducing numerical errors
due to truncation. Consequently, time traces during turbulent
phases in nonlinear MHD simulations have to be considered in
terms of averages. While time traces may differ significantly
regarding their short-term characteristics, averages of the sys-
tem’s dynamical variables over a comparable and sufficiently
long phase should be independent of the precision used in the
simulation.

Originally, the code had been designed to operate in double
precision. It was successfully adapted to run in single precision
arithmetic, except for one critical region which demands double
precision for reasons of numerical stability. This critical region
restricts itself to the call of a library routine which solves the
band-diagonal systems during the Crank–Nicolson steps, and is
now fixed to double precision in the implementation. Overall,
the desired mode can be chosen at compile time, provided that
suitable numerical libraries are supplied.

5. Numerical results

5.1. Single vs. double precision arithmetic

To justify the use of single precision, identical test cases
were computed in both precisions, and the results were com-
pared subsequently. As an example, time traces depicting the
magnetic energy and the maximum velocity during a dynamo
onset are shown in Fig. 1. While the graphs differ during the
initial nonlinear phase due to the effects mentioned above, one
finds that the system reaches its quasi-stationary state at the
same level. In the run which uses single precision the dynamo
onset takes place slightly earlier. Averaging over the interval
between 2.5 and 5.0, the periodic time of the oscillations is in
both cases 0.262, rounded to three decimal places. The aver-
age amplitude of the magnetic energy is 0.182 (sp), and 0.183
(dp), respectively. These numbers show that it is legitimate to
speed-up simulations by exploiting single precision arithmetic,
especially during the time-consuming exploration of Re–Rm-
space, where the question is if self-excitation occurs at all. The
physical process which is shown in Fig. 1 is briefly explained
as follows. During the initial phase, the fluid is driven to a tur-
bulent flow, only a weak seed magnetic field is present, which
is of the order 10−6 in terms of the magnetic energy. The ve-
locity field allows the growth of magnetic eigenmodes, which
rise exponentially at first and then nonlinearly saturate. At this
point the magnetic field reacts back on the velocity field and
suppresses the turbulence.

Fig. 2 shows the dependence of the observed speedup on
the grid size, measured with 2 processes on a single 2-way
Pentium IV node. At a coarse resolution of 50 × 09 × 18
points (where Nr × Nθ × Nφ characterizes the spherical grid),
a small speedup around 1.2 is achieved. When the resolu-
tion is successively increased, the speedup also goes up. At
350×16×32 points, a maximum speedup of 1.72 is measured.
Going to higher resolutions reduces the observed speedup. At
400 × 24 × 48 points, it is still at a significant level around



248 K. Reuter et al. / Computer Physics Communications 179 (2008) 245–249
Fig. 1. Simulation of a dynamo onset using single and double precision, respec-
tively, for an identical test case (Re ≈ 520, Rm ≈ 205). The observed speedup
is Tdp/Tsp ≈ 1.69.

Fig. 2. Observed speedup against number of radial points, gained by exploiting
single precision arithmetic on a 2-way Intel Pentium IV node. Angular mesh
sizes are as indicated.

1.5. This behavior is likely to be caused by CPU cache effects.
At low resolutions, both cases show proper cache usage, which
makes the advantage of single precision marginal. An increase
of the resolution leads to the situation, where arrays involved
in at least a part of the computations still fit into the cache in
single precision, while in double precision cache memory is al-
ready exceeded. At even finer resolutions, array sizes reach the
cache size in both cases, which leads to the observed decrease
of the speedup. These numbers can be taken as guiding values
to optimize the size of domains in parallel computing. However,
they vary between different types of CPUs.

5.2. Parallel computations

The parallel code was first benchmarked on a standard Linux
cluster with 2-way Intel Pentium IV nodes, connected via Gi-
gabit Ethernet. While the speedup is nearly ideal going from
1 to 2 processors on a single node, it breaks down dramati-
cally when more than one node is used. This is mainly to be
caused by the relatively slow interconnect in combination with
Fig. 3. Weak scaling of the parallel code in 4 different cases. In addition to the
grid resolution in real space, the degree l of the spherical harmonics used in the
transforms is given in parentheses. The number of radial gridpoints is increased
linearly.

Fig. 4. Parallel efficiency of the code in the cases presented in Fig. 3.

the global matrix transpose which implies expensive all-to-all
communication, as it can be shown by measurement. On one
processor without the transpose, the Crank–Nicolson steps take
about 10% of overall runtime, as it was measured in a test run at
400 × 32 × 64 grid points. Going to 2 CPUs, this proportion is
13%, whereas it rises to 45% (65%, 71%) with 4 (8, 16) proces-
sors. To allow for better performance on Beowulf-type clus-
ters with slow interconnect, a change from the Crank–Nicolson
method to a fully explicit scheme should be considered.

In addition, the scaling of the parallel code was examined
on a Linux cluster with 8 Intel Xeon CPUs per node and Infini-
Band interconnect. Consequently, we have rescaled the mea-
surements presented below in the way that 8 CPUs correspond
to a speedup of 8, and an efficiency of 1. Fig. 3 shows the
scaled speedup (weak scaling) where the resolution is increased
linearly with the number of CPUs. It is defined in the stan-
dard way as S = P t(N0,1)/t (PN0,P ), where P is the number
of CPUs in use, N0 is the base grid resolution and t is the
wallclock time. Four test cases are examined, where the resolu-
tion and also the degree l of the spherical harmonics is given
in Fig. 3. Fig. 4 shows the corresponding parallel efficiency
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Fig. 5. Strong scaling of the parallel code in 4 different cases.

which is given by the ratio S/P . The cases with l = 30,40
scale efficiently up to 32 processors, whereas the cases with
l = 52,66 use 128 processors efficiently. Fig. 5 shows the ob-
served speedup (strong scaling) in 4 test cases where the num-
ber of CPUs is increased linearly at a fixed problem size. The
observed speedup is defined as the ratio t (1)/t (P ). Again, de-
pending on the resolution, a nearly ideal scaling is observed.

6. Summary

In this paper, the parallelization of a nonlinear pseudo-
spectral MHD code is reported. It is implemented using a
dual domain decomposition technique in both real and spec-
tral space. The parallel version shows a nearly ideal scaling
going up to 128 processors. In addition, it is shown that com-
putations on modern x86-architectures (e.g., Intel Pentium IV)
can benefit from arithmetic in IEEE single precision by a factor
of 1.7. The combination of parallel computing and single preci-
sion arithmetic is expected to speed up simulations of turbulent
MHD dynamos significantly. It is now possible to explore the
highly turbulent regime 1500 < Re < 5000 in Re–Rm-space.
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